Dual role of protein kinase C on BK channel regulation.

نویسندگان

  • Xiao-Bo Zhou
  • Iris Wulfsen
  • Emine Utku
  • Ulrike Sausbier
  • Matthias Sausbier
  • Thomas Wieland
  • Peter Ruth
  • Michael Korth
چکیده

Large conductance voltage- and Ca(2+)-activated potassium channels (BK channels) are important feedback regulators in excitable cells and are potently regulated by protein kinases. The present study reveals a dual role of protein kinase C (PKC) on BK channel regulation. Phosphorylation of S(695) by PKC, located between the two regulators of K(+) conductance (RCK1/2) domains, inhibits BK channel open-state probability. This PKC-dependent inhibition depends on a preceding phosphorylation of S(1151) in the C terminus of the channel alpha-subunit. Phosphorylation of only one alpha-subunit at S(1151) and S(695) within the tetrameric pore is sufficient to inhibit BK channel activity. We further detected that protein phosphatase 1 is associated with the channel, constantly counteracting phosphorylation of S(695). PKC phosphorylation at S(1151) also influences stimulation of BK channel activity by protein kinase G (PKG) and protein kinase A (PKA). Though the S(1151)A mutant channel is activated by PKA only, the phosphorylation of S(1151) by PKC renders the channel responsive to activation by PKG but prevents activation by PKA. Phosphorylation of S(695) by PKC or introducing a phosphomimetic aspartate at this position (S(695)D) renders BK channels insensitive to the stimulatory effect of PKG or PKA. Therefore, our findings suggest a very dynamic regulation of the channel by the local PKC activity. It is shown that this complex regulation is not only effective in recombinant channels but also in native BK channels from tracheal smooth muscle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Large Conductance Voltage-and Ca2+-Activated K+ Channels by the Janus Kinase JAK3.

BACKGROUND/AIMS Janus kinase 3 (JAK3), a tyrosine kinase contributing to the regulation of cell proliferation and apoptosis of lymphocytes and tumour cells, has been shown to modify the expression and function of several ion channels and transport proteins. Channels involved in the regulation of cell proliferation include the large conductance voltage- and Ca(2+)-activated K(+) channel BK. The ...

متن کامل

The calcium-dependent activity of large-conductance, calcium-activated K+ channels is enhanced by Pyk2- and Hck-induced tyrosine phosphorylation.

Recent results showing that large-conductance, calcium-activated K(+) (BK(Ca)) channels undergo direct tyrosine phosphorylation in the presence of c-Src tyrosine kinase have suggested the involvement of these channels in Src-mediated signaling pathways. Given the important role for c-Src in integrin-mediated signal transduction, we have examined the potential regulation of BK(Ca) channels by pr...

متن کامل

Palmitoylation gates phosphorylation-dependent regulation of BK potassium channels.

Large conductance calcium- and voltage-gated potassium (BK) channels are important regulators of physiological homeostasis and their function is potently modulated by protein kinase A (PKA) phosphorylation. PKA regulates the channel through phosphorylation of residues within the intracellular C terminus of the pore-forming alpha-subunits. However, the molecular mechanism(s) by which phosphoryla...

متن کامل

Effects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation

Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...

متن کامل

Bidirectional control of BK channel open probability by CAMKII and PKC in medial vestibular nucleus neurons

van Welie I, du Lac S. Bidirectional control of BK channel open probability by CAMKII and PKC in medial vestibular nucleus neurons. J Neurophysiol 105: 1651–1659, 2011. First published February 9, 2011; doi:10.1152/jn.00058.2011.—Large conductance K (BK) channels are a key determinant of neuronal excitability. Medial vestibular nucleus (MVN) neurons regulate eye movements to ensure image stabil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 17  شماره 

صفحات  -

تاریخ انتشار 2010